.. _graphics-rotated_pole_mapping: Rotated pole mapping ===================== This example uses several visualisation methods to achieve an array of differing images, including: * Visualisation of point based data * Contouring of point based data * Block plot of contiguous bounded data * Non native projection and a Natural Earth shaded relief image underlay .. plot:: /net/home/h04/dkillick/git/iris/docs/iris/example_code/graphics/rotated_pole_mapping.py :: """ Rotated pole mapping ===================== This example uses several visualisation methods to achieve an array of differing images, including: * Visualisation of point based data * Contouring of point based data * Block plot of contiguous bounded data * Non native projection and a Natural Earth shaded relief image underlay """ import cartopy.crs as ccrs import matplotlib.pyplot as plt import iris import iris.plot as iplt import iris.quickplot as qplt import iris.analysis.cartography def main(): fname = iris.sample_data_path('rotated_pole.nc') air_pressure = iris.load_cube(fname) # Plot #1: Point plot showing data values & a colorbar plt.figure() points = qplt.points(air_pressure, c=air_pressure.data) cb = plt.colorbar(points, orientation='horizontal') cb.set_label(air_pressure.units) plt.gca().coastlines() plt.show() # Plot #2: Contourf of the point based data plt.figure() qplt.contourf(air_pressure, 15) plt.gca().coastlines() plt.show() # Plot #3: Contourf overlayed by coloured point data plt.figure() qplt.contourf(air_pressure) iplt.points(air_pressure, c=air_pressure.data) plt.gca().coastlines() plt.show() # For the purposes of this example, add some bounds to the latitude # and longitude air_pressure.coord('grid_latitude').guess_bounds() air_pressure.coord('grid_longitude').guess_bounds() # Plot #4: Block plot plt.figure() plt.axes(projection=ccrs.PlateCarree()) iplt.pcolormesh(air_pressure) plt.gca().stock_img() plt.gca().coastlines() plt.show() if __name__ == '__main__': main()