.. _graphics-orca_projection: Tri-Polar Grid Projected Plotting ================================ This example demonstrates cell plots of data on the semi-structured ORCA2 model grid. First, the data is projected into the PlateCarree coordinate reference system. Second four pcolormesh plots are created from this projected dataset, using different projections for the output image. .. plot:: /net/home/h04/dkillick/git/iris/docs/iris/example_code/graphics/orca_projection.py :: """ Tri-Polar Grid Projected Plotting ================================ This example demonstrates cell plots of data on the semi-structured ORCA2 model grid. First, the data is projected into the PlateCarree coordinate reference system. Second four pcolormesh plots are created from this projected dataset, using different projections for the output image. """ import matplotlib import matplotlib.pyplot as plt import cartopy.crs as ccrs import iris import iris.analysis.cartography import iris.quickplot as qplt def main(): # Load data filepath = iris.sample_data_path('orca2_votemper.nc') cube = iris.load_cube(filepath) # Choose plot projections projections = {} projections['Mollweide'] = ccrs.Mollweide() projections['PlateCarree'] = ccrs.PlateCarree() projections['NorthPolarStereo'] = ccrs.NorthPolarStereo() projections['Orthographic'] = ccrs.Orthographic(central_longitude=-90, central_latitude=45) pcarree = projections['PlateCarree'] # Transform cube to target projection new_cube, extent = iris.analysis.cartography.project(cube, pcarree, nx=400, ny=200) # Plot data in each projection for name in sorted(projections): fig = plt.figure() fig.suptitle('ORCA2 Data Projected to {}'.format(name)) # Set up axes and title ax = plt.subplot(projection=projections[name]) # Set limits ax.set_global() # plot with Iris quickplot pcolormesh qplt.pcolormesh(new_cube) # Draw coastlines ax.coastlines() plt.show() if __name__ == '__main__': main()